1. (a) A student investigated the three states of matter.

The arrangement of particles in the three states of matter are different.
Draw one line from each particle arrangement to the state of matter.

Particle arrangement

A large lump of ice was heated and changed state.
The figure below shows how the temperature varied with time.

(b) Which part of the figure above shows when the ice was melting?

Tick (\checkmark) one box.
A

B

C

D \square
(c) Which part of above the figure above shows when the water was boiling?

Tick (\checkmark) one box.
A

B

C

D \square
(d) Which property of the water particles changes as the temperature of the water increases? Tick (\checkmark) one box.

The kinetic energy of the particles

The mass of each particle

The number of particles

(e) Calculate the thermal energy needed to melt 0.250 kg of ice at $0^{\circ} \mathrm{C}$.
specific latent heat of fusion of water $=334000 \mathrm{~J} / \mathrm{kg}$
Use the equation:
thermal energy $=$ mass \times specific latent heat
\qquad
\qquad
\qquad
Thermal energy = \qquad J
(f) Complete the sentence.

Choose the answer from the box.

condenses	evaporates	ionises	sublimates

A substance is heated and changes directly from a solid to a gas.
The substance \qquad .
2. A student wanted to determine the density of a small piece of rock.
(a) Describe how the student could measure the volume of the piece of rock.
\qquad
(b) The volume of the piece of rock was $18.0 \mathrm{~cm}^{3}$.

The student measured the mass of the piece of rock as 48.6 g .
Calculate the density of the rock in $\mathrm{g} / \mathrm{cm}^{3}$.
Use the equation:

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

\qquad
\qquad
\qquad
\qquad
Density = \qquad $\mathrm{g} / \mathrm{cm}^{3}$

The graph below shows the densities of different types of rock.

(c) What is the most likely type of rock that the student had?

Tick one box.

Basalt

Flint

Granite

Limestone

Sandstone

(d) Give one source of error that may have occurred when the student measured the volume of the rock.
\qquad
\qquad
(e) How would the error you described in part (d) affect the measured volume of the rock?
\qquad
\qquad
3. The wind turbines in a wind farm must have a minimum distance of 500 m between them for maximum efficiency.

The diagram shows the position of nine wind turbines in a wind farm.

(a) Suggest one way in which the layout of this wind farm ensures maximum efficiency when the wind direction changes.
\qquad
\qquad
\qquad

The average mass of air passing through the blades of one wind turbine is 51000 kg per second.
The density of air is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$
(b) Write down the equation that links density, mass and volume.
(c) Calculate the volume of air passing through the blades of one wind turbine in one second.

Give the unit.
Give your answer to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Volume in one second $=$ \qquad Unit \qquad
(d) The average power output from one of the wind turbines in the diagram is $1.6 \times 10^{6} \mathrm{~W}$ The average power output of a nuclear power station is $2.4 \times 10^{9} \mathrm{~W}$

Calculate the number of wind turbines needed to generate power equal to one nuclear power station.
\qquad
\qquad
\qquad
Number of wind turbines $=$ \qquad
(e) The UK requires a minimum electrical power of $2.5 \times 10^{10} \mathrm{~W}$ at any time.

Give two reasons why wind turbines alone are unlikely to be used to meet this requirement.

1. \qquad
2. \qquad
\qquad
3. A student investigated the density of different fruits.

To determine the density of each fruit, the student measured the volume of each fruit.
The figure below shows the equipment the student could have used.

Beaker

Displacement can

Measuring cylinder

(a) Describe a method the student could have used to measure the volume of the lime.
\qquad
(b) The student measured the volume of each fruit three times and then calculated a mean value.

The three measurements for a grape were
$2.1 \mathrm{~cm}^{3}$
$2.1 \mathrm{~cm}^{3}$
$2.4 \mathrm{~cm}^{3}$

Calculate the mean value.
\qquad
\qquad
\qquad
Mean value $=$ \qquad cm^{3}
(c) What are the advantages of taking three measurements and calculating a mean value? Tick ($\sqrt{ }$) two boxes.

Allows anomalous results to be identified and ignored. \square

Improves the resolution of the volume measurement. \square

Increases the precision of the measured volumes. \square

Reduces the effect of random errors when using the equipment. \square

Stops all types of error when using the equipment.

(d) The mass of an apple was 84.0 g .

The volume of the apple was $120 \mathrm{~cm}^{3}$.
Calculate the density of the apple.
Give your answer in $\mathrm{g} / \mathrm{cm}^{3}$.
Use the equation:

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

\qquad
\qquad
\qquad

$$
\text { Density }=\ldots \mathrm{g} / \mathrm{cm}^{3}
$$

5. The figure below shows a balloon filled with helium gas.

(a) Describe the movement of the particles of helium gas inside the balloon.
\qquad
\qquad
\qquad
\qquad
(b) What name is given to the total kinetic energy and potential energy of all the particles of helium gas in the balloon?

Tick one box.

External energy

Internal energy

Movement energy

(c) Write down the equation which links density, mass and volume.
\qquad
(d) The helium in the balloon has a mass of 0.00254 kg .

The balloon has a volume of $0.0141 \mathrm{~m}^{3}$.
Calculate the density of helium. Choose the correct unit from the box.

$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{~kg} \mathrm{~m}^{3}$

\qquad
\qquad
\qquad
\qquad
Density $=$ \qquad Unit \qquad
6. Two students investigated the change of state of stearic acid from liquid to solid.

They measured how the temperature of stearic acid changed over 5 minutes as it changed from liquid to solid.

Figure 1 shows the different apparatus the two students used.

Figure 1

Student A's apparatus

Student B's apparatus

(a) Choose two advantages of using student A's apparatus.

Tick two boxes.

Student A's apparatus made sure the test was fair. \square

Student B's apparatus only measured categoric variables. \square

Student A's measurements had a higher resolution. \square

Student B was more likely to misread the temperature.

(b) Student \mathbf{B} removed the thermometer from the liquid each time he took a temperature reading.

What type of error would this cause?

Tick one box.

(c) Student A's results are shown in Figure 2.

Figure 2

What was the decrease in temperature between 0 and 160 seconds?

Tick one box.
$8.2^{\circ} \mathrm{C}$

$8.4^{\circ} \mathrm{C}$

$53.2^{\circ} \mathrm{C}$

$55.6^{\circ} \mathrm{C}$
(d) Use Figure 2 to determine the time taken for the stearic acid to change from a liquid to a solid.

$$
\text { Time }=\ldots \text { seconds }
$$

(e) Calculate the energy transferred to the surroundings as 0.40 kg of stearic acid changed state from liquid to solid.

The specific latent heat of fusion of stearic acid is $199000 \mathrm{~J} / \mathrm{kg}$.
Use the correct equation from the Physics Equations Sheet.
\qquad
\qquad
\qquad

$$
\text { Energy }=
$$

(f) After 1200 seconds the temperature of the stearic acid continued to decrease. Explain why.
\qquad
\qquad
\qquad
\qquad
7. A teacher demonstrated the relationship between the pressure in a gas and the volume of the gas.

The figure below shows the equipment used.

(a) What is the range of the syringe?

Tick (\checkmark) one box.

From 0 to $1 \mathrm{~cm}^{3}$

From 0 to $5 \mathrm{~cm}^{3}$

From 0 to $25 \mathrm{~cm}^{3}$

(b) The relationship between the pressure and volume of a gas is given by the equation:

$$
\text { pressure } \times \text { volume }=\text { constant }
$$

Complete the sentence.
For this equation to apply, both the mass of gas and the \qquad of the gas must stay the same.
(c) The initial volume of the gas in the syringe was $12 \mathrm{~cm}^{3}$.

The initial pressure of the gas in the syringe was 101000 Pa .
Calculate the constant in the equation below.

$$
\text { pressure } \times \text { volume }=\text { constant }
$$

$$
\text { Constant }=\ldots \mathrm{Pa} \mathrm{~cm}^{3}
$$

(d) The teacher pulled the plunger slowly outwards and the gas expanded.

The new volume of the gas was $24 \mathrm{~cm}^{3}$.
Calculate the new pressure in the gas.
The constant has the same value as in part (c)
\qquad
\qquad
\qquad
\qquad
\qquad
New pressure $=\ldots \mathrm{Pa}$
(e) Which change occurs when the plunger is pulled slowly outwards?

Tick (\checkmark) one box.

The gas particles stop moving.

There are more frequent collisions between the gas particles.

There is more space between the gas particles.

8. A student used the equipment in the image below to investigate how the pressure of a gas varies with the volume of the gas.

The syringe is filled with air.
The table below shows the results.

Volume in cm	
3	Pressure in kPa
24	100
20	120
12	200
10	240

(a) Describe how the student could use the equipment in the image above to obtain the data shown in the table.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Describe what happens to the pressure of the air when the volume of the air is halved.
\qquad
\qquad
\qquad
\qquad
(c) The temperature of the air in the syringe remained constant during the student's investigation.

Which two properties of the air particles would change if the temperature increased? Tick ($\sqrt{ }$) two boxes.

9. Figure 1 shows water being heated. Eventually the water changed into steam.

Figure 1

(a) Complete the sentences.

Choose answers from the box.
Each answer may be used once, more than once or not at all.

greater than	less than	the same as

The distance between the particles in steam is \qquad the distance between the particles in liquid water.

The density of steam is \qquad the density of liquid water.

Figure 2 shows how the temperature of the water varied with time.

Figure 2

(b) What is the name of the process that is taking place between points \mathbf{A} and \mathbf{B} ?

Give a reason for your answer.
Process \qquad
Reason \qquad
\qquad
(c) A mass of 0.063 kg of water was turned into steam.

The specific latent heat of vaporisation of water is $2260000 \mathrm{~J} / \mathrm{kg}$

Calculate the thermal energy transferred to the water to turn it into steam.
Use the equation:
thermal energy for a change of state $=$ mass \times specific latent heat
\qquad
\qquad
\qquad
Energy = \qquad J
(d) The mass of the steam was 0.063 kg

The volume of the steam was $0.105 \mathrm{~m}^{3}$

Calculate the density of steam.
Use the equation:

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

Choose the unit from the box.

kg	$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{kg} / \mathrm{m}^{3}$

\qquad
\qquad
\qquad
Density = \qquad Unit \qquad
10. The diagram below shows a cyclist riding along a flat road.

(a) Complete the sentence.

Choose answers from the box.

```
chemical elastic potential gravitational potential kinetic
```

As the cyclist accelerates, the \qquad energy store in the cyclist's body decreases and the \qquad energy of the cyclist increases.
(b) The mass of the cyclist is 80 kg . The speed of the cyclist is $12 \mathrm{~m} / \mathrm{s}$.

Calculate the kinetic energy of the cyclist.
Use the equation:

$$
\text { kinetic energy }=0.5 \times \text { mass } \times(\text { speed })^{2}
$$

\qquad
\qquad
\qquad
\qquad
Kinetic energy = \qquad J
(c) When the cyclist uses the brakes, the bicycle slows down.

This causes the temperature of the brake pads to increase by $50^{\circ} \mathrm{C}$.
The mass of the brake pads is 0.040 kg .
The specific heat capacity of the material of the brake pads is $480 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$.
Calculate the change in thermal energy of the brake pads.
Use the equation:
change in thermal energy $=$ mass \times specific heat capacity \times temperature change
\qquad
\qquad
\qquad
Change in thermal energy $=$ \qquad J
(d) How is the internal energy of the particles in the brake pads affected by the increase in temperature?

Tick one box.

Decreased

Increased

Not affected

11.

A student investigated how the pressure of a gas varied with the volume of the gas.
The mass and temperature of the gas were constant.
The diagram shows the equipment the student used.

(a) What is the range of the syringe?

Tick one box.

0 to $1 \mathrm{~cm}^{3}$ \square

0 to $5 \mathrm{~cm}^{3}$

0 to $20 \mathrm{~cm}^{3}$

0 to $25 \mathrm{~cm}^{3}$

(b) What type of variable was the mass of gas?

Tick one box.

Control

Dependent

Independent

The student compressed the gas in the syringe and read the pressure from the pressure gauge.
The graph shows the student's results.

(c) The student concluded that when the pressure was multiplied by the corresponding volume the answer was the same.

Use data from the graph to show that the student's conclusion was correct.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Complete the sentences.

Choose the answers from the box.
Each answer may be used once, more than once or not at all.

decreases	increases	remains the same

When the gas is compressed, the volume of gas in the syringe \qquad .

So the number of collisions each second between the gas particles inside the syringe and the inside surface of the syringe \qquad .

This means the force exerted on the inside surface of the container walls \qquad .
12.

An electric kettle was switched on.
The graph below shows how the temperature of the water inside the kettle changed.

(a) When the kettle was switched on the temperature of the water did not immediately start to increase.

Suggest one reason why.
\qquad
\qquad
\qquad
(b) The energy transferred to the water in 100 seconds was 155000 J .
specific heat capacity of water $=4200 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$
Determine the mass of water in the kettle.
Use the graph above.
Give your answer to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mass of water (2 significant figures) $=\ldots \quad \mathrm{kg}$
(c) The straight section of the line in above graph can be used to calculate the useful power output of the kettle.

Explain how.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

